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Section 1 !

INTRODUCTION AND SUMMARY

This is the final report on AFGL Contract F19628-81-C-0048 titled
"Electron Beam Transport in the Ionosphere - Energy Deposition and Optical
Emissions Based Upon the Combined Effects of Plasma Turbulence and Particle-
Particle Interactions”". This work has been carried out for the Air Force
in support of planned rocket and satellite kilovolt electron beam (e-beam)
experiments. Our goals in this program have been to

1) model plasma turbulence as it affects kilovolt e-beams in
the E-region,
and
2) make gquantitative estimates of beam energy deposition and
luminosity as functions of altitude z and radial distance r.

This work is an extension of our efforts under a previous contract
in which code MCBE was developed and applied to the problem of particle-particle

interactions. MCBE is a 2D Monte Carlo code explicitly treating electron motion
in a magnetic field. Energy loss is approximated as continuous and beam spread-
ing comes about by use of a multiple-scattering formula.

Particle-particle interactions are not sufficient to cause the
spreading observed in some beam produced luminosity streaks of past experiments.
(Davis et al. (1971) and Hallinan et al. (1978)). We were able to determine the
extent of this deficiency in our earlier work using MCBE. It is clear from this
work as well as from an examination of Hallinan's date that plasma turbulence can

Py —eeey

play an important role in e-beam propagation in the E-region. Much of our effort
under the current contract has been to quantify the effect of this turbulence.




It is helpful to briefly outline the approach we have taken in
model ing beam-plasma interactions prior to presenting the details in Sections
2 and 3. We first assume the wave-particle and particle-particle regions can
be effectively separated. The basis of the model is then that the given tur-
bulence can cause a series of effective displacements of the beam electron gquid-
ing centers through a corresponding series of briefly experienced perpendicular

T WS SS Sogmeew g ey TS NEE TR T TS

i components of the turbulent electric field, E, . The lower altitude boundary
for this effect is defined as the altitude at which the turbulent growth rate
equals the particle-particle collision frequency. Above this altitude, we use

a Monte Carlo description to follow the motions of the beam electron guiding
centers caused by the above mentioned displacements if they are given altitude
E dependence. Otherwise, the final result of the displacements is given by an

i analytical radial distribution function (Gaussian).

i A given displacement is a function of both E, and an auto-

| correlation time :. We choose to replace E, by an expression containing ‘v,
the velocity spread of the beam reflecting the strength of the turbulence.

f' The nature of this quantity will be considered for both cold and warm beams.
Emphasis will be on warm beams for which ‘v can be equated to the beam thermal
i velocity. Specification of &v for this case is made through the parameter

L - which gives the ratio of the thermal to the beam energy [ = (*v/v)z].
Spreading is then examined for & ranging from .0l to .1 with the guiding
center displacement being constant versus altitude. It is difficult to pre-
scribe the beam thermal velocity. For this reason we have chosen limiting

b values of + for a given beam so as to bound the beam spread. This scoping
approach to the problem is further justified because of the large uncertainties
in the experimental measurements.

Following the above introductory remarks, we summarize our results

as follows:

1) A model has been developed which provides for beam spredading

; by plasma turbulence. The model i< based on random walk

motion of the beam electron quiding centers caused by the
perpendicular component of the turbulent electric field.
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2)

3)

of energy deposition and optical emissions for electron beams propagating
through the E-region under the influence of particle-particle interactions

and plasma turbulence.

The model has been used in an analysis of beam spreading
reported by Hallinan et al. (1978) [ECHO IV experiment] and
Davis et al. (1971). We can account for most beam widths
by adding the additional spreading due to particle-particle
effects. For the pulses injected below 180 km, our fits
suggest a [, value < .0l.

Detailed energy deposition results (in r and z) are pre-
sented for two of the beam cases considered. The results
come from code MCBE for incident radial distributions given
by a delta function and by the above mentioned turbulence
model.

Optical properties of the beams treated in 3) are determined.
These include r,z distributions of surface brightness for the
sum of most emission features in the UV and visible portions
of the optical spectrum. Scaling factors are also provided
which relate emission efficiencies to energy deposition for
the individual features just mentioned.

As a concluding remark, the work carried out in this program
together with that from the earlier one enables us to examine the r,z dependence




Section 2

RANDOM WALK MODEL FOR WAVE-PARTICLE INTERACTIONS

In this section, we will describe the random walk of the guid-
ing center of the beam clectrons due to wave-particle interactions. This
type of treatment is meant to place the mechanism of the spreading caused
by wave-particle interactions on the same footing as that for particle-
particle interactions; the details of the latter have been given by Lin
and Strickland (1981). In the case of particle-particle interactions,
the random force is provided by collisions between beam electrons and
neutral particles. For wave-particle interactions, the random force is
due to the turbulent E field acting on the beam electrons.

2.1 Guiding Center Motion.

Let B be the magnetic field ana z the direction of B.
The equation of motion of a beam electron is given by

dv _ Eﬁ_fng + ef

dt mc m

We are not interested in the coordnates of the beam electron;

instead, what concerns us are the coordinates ot its guiding center. In the

x-y plane, the electron is positioned at (x,y) with velocity (vx,vy) while
its guiding center is at FGC = (XGL’yGC)' They are related by

6~ X Vy/

Yoo 7Y TN/




where 7 is the gyrofrequency.

Taking the perpendicular component (i.e., the component in
the x-y plane) of Equation (1) and using Equations (2) and (3), we arrive
at

e _ eE, (a)
dt me
or
ek
L
ArGC = e T (5)

where £, is now the perpendicular component of the turbulent E field and
v is the time interval for a coherent interaction (the auto-correlation
time).

Equation (5) is the basis for our random walk model for wave
particle interactions. It can also be derived using the EXB drift velocity
EX§/CB2 to get Ar= Varift ' The picture of the random walk of the guiding
center is described in the following subsection.

2.2 Spatial Properties of the Turbulence Model.

The turbulent plasma is considered to contain regions of
appreciable electric field strengths. Within each region, phase coherence
is maintained in the manner described by Stix (1964). The phase of oscil-
lations in one region is random with respect to the phase in each other
region due to nonlinear effects of the large-amplitude disturbance. The
Tength within which coherence is maintained is called the correlation length.
(Stix's analysis results in a correlation length of about 0.64  where
is the effective wavelength of the turbulence).

In a correlation length, the beam electron sces a constant E

field (see Appendix B for details). FEach of the three dimensions of a




coherent region is about one correlation length. Thus, the beam electrons
feel the constant £ field during the time they traverse a correlation length
and then run into another coherent region where they feel another constant
b-tield whose phase is random with respect to the £ field in the previous

coherent vegion, and so on. The guiding center accordingly undergoes a random

walk motion such that the beam spreads.

2.3 Displacement ﬁrGC as a Function of Turbulent Velocity *v.

We first define needed quantities associated with the coherency of the

turbulent spectrum. The correlation length % is given by

and the coherency time by

.= Q/vb (7)

The above expressions are appropriate for coherent wave packets with group
velocities much smaller than the beam velocity. The value of C1 is of order

unity with its specific value given by the applied turbulence model.

Tne potential energy of the turbulent electrostatic mode can be

written

er = 8 VT [% m(v) €] (8)

wnere the velocity -v is an equivalent measure of the strenath of the
turbulence. The numerical factor in Equation (8) corresvonds to the re-

sult of Drummond et al. (1970). For cold beam-weak turbulence, ‘v = vb"- Sk
as discussed by Drummond et a1. (1970) and 0'Neil et al (1971). TFor scrong
turbulence, ‘v = Vb/4 v2 as described by Stix (1964). We assume the cold beam-weak

turbulence form can also be applied to the warm beam-weak turbulence case which shall

be of particular interest to us. In Section 3.1, this will Tead to v being

equated to the beam thermal velocity.
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The wave-particle interaction is a collisionless effect. Mode
damping will occur when particle-particle interactions become large enough
at the lower altitudes. This limiting particle-particle frequency can be
written

- (particle-particle collision) = CZ‘ (9)
where  is the linear growth and C2 is of order unity.

Let “k be the angle between kK and B and b the angle between
Vb and B. We introduce an effective gyroradius rg:

g (10)
which is defined independent of the angle -
With the use of Equations (6), (7), (8), and (10) we can
write Equation (5) in the form '
Ar
- GC - . fvy2
= 8 vZ2 rC,y sin - (=) (11)
rg 1 k Vi,
Use is made of £, = ﬁltan o ¢k“ = EIi >, and ka = 21, To apply T

Equation (11) to a specific problem, we nust provide a specification to
‘v which will be done in Section 3.

2.4 Radial Distribution Function and Avearge Beam Radius. 1

In this subsection, we discuss the two cases where SFGC s
constant and variable. For the case of constant erC' the needed function
for the beam radial distribution after N displacements of the guiding

center is analytical. For the other case, a numerical procedurc is called

for. and this has been developed by us durina this program. Detaile now tollow,
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We begin by defining N, the total number of steps or guiding
center displacements caused by the turbulence. It is

= (12)
where L is the travel time of the beam electrons within the region where
the wave-particle interaction is dominant. Since the parallel wave pnase
velocity is equal to the corresponding component of the beam velocity in the
types of plasma turbulence to be considered, viz.
. =V (1 \
/Ky b €OS p (13}
we can write the coherence time in terms of the wave frequency:
T o= 2m C1 €os u, €OS b/ - (14)
If we let d be the distance between the injection altitude and the altitude
at which the particle-particle collision frequency is C? times the linear qrowth
rate, then t = d/Vb cos [b and we obtain
N o= - : 5 (‘59) (1£)
C127 €os v, cos ”b b
. _ 6 -1 . 2, _ R ¢
A typical case of = 6 x 107 sec ", d = 50 km, mvb/2 = 26 keV, Uk F 45",
0

and boc 707 nenerates an N of 8512 if C1 = 1,




Let wN(r) designate the radial distribution function after N

displacements where N refers to an average for each of the beam particles.
For constant ArGC’ wN(r) has the form

":Y‘ 2 "1 ?
GC r
Wy (r) = [ N (7————) ] exp - — -
" g N (.A_'”.% ) ¢
r
g

with normalization

/ WN(r) 2rirdr = 1.
0

wN(r) is the same distribution function given by Lin and Strickland (1981) for
particle-particle interactions, except now Arac is tc be specified for wuve-
particle effects.

We may go one step further for the constant step size case and
express analytically the average radius of the beam from Equation (16).
Designating it by <r>w,(in units of rg), it is

AY, C. T sin . - 2
<y = VY .__G.- = 4'ﬂ \/__C_l___ —_— i‘l_n.—\_‘.( :.\g_ (SV
W 2rg cos 1, COsS - v,

We will make use of tquations (16) and (18) in the next section
as we discuss the ECHO IV experiment.

16)

(18




For non-constant ArGC. we have developed a Monte Carlo code (WPDIF)

to describe the 2D random walking of the beam electron guiding centers.

A brief description of the input parameters and calculation follows starting

with the parometers. They are:

Z4 starting altitude

o cosine of the pitch angle of the starting beam electrons
3 electron energy

np(z) altitude profile of the plasma density

Ib starting beam current

fO starting distribution of guiding centers

M number of histories or electrons to be sampled.

The value of M used to obtain our initial resuits is 1000. These M

electrons are allowed to advance in their random motion as a group. Thus

in passing through a given £z corresponding to the coherence time 7, M

guiding center displacements are determined and recorded. This enables

us to specify the decreasing beam density at each step for input into the
expressicn for the displacement through the next step. The calculation
proceeds until the growth rate v for the given instability is exceeded by

the electron-neutral collision frequency.

This completes the formalism of our random walk model. We

now turn to applications in which specification will be given to iv and N.

[P



Section 3

APPLICATIONS OF THE RANDOM WALK MODEL

We now consider the level of plasma turbulence anticipated for
beam parameters of interest. It is convenient to follow Davidson (1972) in
defining two categories of beam driven turbulence. Weak turbulence corresponds
to turbulent energy densities much smaller than the kinetic energy of the bean,
whereas strong turbulence implies that a large portion of the beam energy is
transferred to turbulence. Since beam energy losses to plasma turbulence have
been found experimentally to be small, we consider weak turbulence in this
report.

We distinguish two classes of weak turbulence by examining the
linear theory of beam plasma instability. The growth rate depends on the beam
temperature; if the temperature is sufficiently large, the condition for a

. . L 1/3
warm beam is vy, /vp = o

, where Vbth is the beam thermal velocity and . is

the ratio of the beam to ambient electron density. When the inequality is re-
versed, the beam is considered cold. It is difficult to access the values of

the beam temperature. For cases where a is quite small, however, we assume

the beam temperature can satisfy the above warm beam criterion. In what fol-
Tows we apply the results of warm beam theory to the high energy-low current, and,
thus, small o beams characteristic of the ECHO IV experiment (Hallinan et al.
(1978)). On the other hand, we use cold beam theory to explain beam spreading

in the rocket experiment reported by Davis et al. (1971) where a relatively low

energy (8.7 keV) high current (500 mA) beam was injected.
3.1 Warm e-beam.

For warm beams, fv, is a constant and is equal to the beam thermal
velocity Vhth This may be seen using the linearized theory nf the two-stream
instability (see, e.g., Stix (1962)). The beam and the background plasma con-
sist of a doubly-humped magnetized plasma which is vulnerable to the two-stream
instebility. The dicpersion relation and the frequency are obtained by standard

11




ek

el &

methods (Stix (1964)). T he wave number is obtained by maximizing g'b(v" )
which is the derivative of the beam electron distribution function for the zero-

order velocity component along B. The form of 9 is

2 b
g (v, ) = Mo exp [-mfv, -v, )¢/2kT, ") (19)
b™ " 2rsz“b vy by f

The above maximizing leads to

WKy T Vo, T Vbt (20)
where Voth © kT"b/m. Equation (20) indicates that the parallel beam velocity is
slightly greater than the parallel phase velocity by the amount of the beam thermal
velocity. Recalling now the discussion following Equation (8), we see that
Equation (20) leads us to the desired result, namely

‘y Vbth

The magnitude of the constant step size is probably accurate
during the initial stage of the beam spreading. This may not be as good
an estimate at the final stage where the random walk suddenly stops. To
make the transition smooth from the region where wave-particle interactions
dominate to the region where particle-particle interactions dominate, we
assume that the overall spreading of the beam is effectively the same as
the case where the effective constant step size is half the maximum value

given by Equation (11).

The beam radius as a function of the traveled vertical distance
d can be identified with the mean beam radius. From Equation (18) we have |

where the final value of d is obtained by the criterion that the linear

arowth rate is the wame as the collision frequency (we assume C? = 1).




It should be noted that Al’ as may be obtained from Equation (18) is here
to be halved based on the comments of the previous paragraph. For a warm
beam the linear growth rate is linearly proportional to o (Stix (1Y64)
and Tsvtovich (1977)).

where Q(w), a function discussed in Appendix A, is evaluated at its
maximum. For parameters of interest, Qmax " 0.4. The important

quantities of concern here are o and #. vy is expressed as

v = A,/ (24)

where A2 contains the terms in Equation (23) other than «« and 2 with a Q
; value of .4. If we denote the initial value of v by A\ then

Yo * A2 (mo/(% (25)
and

)2 (26)

V(L RP = /(LA VA

L where we have assumed the thermal energy of the beam remains the same and

the beam initially has a radius of one equivalent gyroradius rg'

1 Equation (26) gives the iinear growth rate as a function of d.
Final d, called df, is obtained by equating y to the collision frequency.

F The values of the paramecters for ECHO IV experiments are assumed
as follows:

13




Cl = 0.64

. 5 -3
Ng = 107 cm
C= 07 sec'1

The quantities .. and G can be worked out following the method

prescribed by Stix (1964). The resulting values are . = 6 x 106 sec-1 and

T 450. Table 1 lists the values of parameters for all observed streaks in
ECHO 1V experiments. The values of uy are given for a beam density distribu-
ted uniformly out to the initial gyroradius rg_ The last column

is the minimum value of (Vbth/vb)2 satisfying the warm beam condition. We
see in all cases that our lower limit of .01 for £ exceeds this required

minimum value.

Table 1. Parameter Values of ECHO 4 Experiments

Pulse Number Energy’(kev) ah Ot min(vbth/vb)2
S _ 1 .
12 38 .00023 60° .0C38
10 26 .00035 70° .0050
21 34 .00036 70¢ .0C51
3 36 .00018 70" .0032
Z4 33 .00042 70° .0056
1 26 .00027 70° .0042
N B — 1

The decreasing of the linear growth rate and the increasing
of the collision frequency for the experimental parameters are shown in Figs. 1-3.
Growth rates are shown for the two 2 values of .0l and .1. Two collision
frequencies are also shown reflecting the uncertainty in the scattering
cross section.  This cross section is given by the screened Rutherford
formula

14
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Figure 1. Growth Rate, Particle-Particle Collision Frequency,

and Mean Beam Radius For Warm Beam Model Applied to

Two of The ECHO IV e-Beams Labeled as Pulses 1 and 10.
Only <ray for pulse 10 is shown since this part of the
figure is to just illustrate the general behavior of the
spreading with propagation distance.
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Figure 3. Similar to Figure 1 Except for Pulses 3, 21, and 24.

Again, only one example of < is included as was

the case in Figure 1.
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where Z is the atomic number of the scatterer, v and p are the velocity and
momentum of the incident electron, and :, is a screening parameter. This
latter quantity may be expressed in the form

2/3
ro= 9..'3.;.__Y “(‘ (28)
£ .
where L ic constant and is dependent on the screening potential. Here,
we consider two values of N (.6 and 1.0) chosen to reflect the uncertainty

in this potential for our application (Berger et al. (1970)).

It is interesting to observe from these plots that the cutoff
altitudes between the wave-particle dominant region and the particle-particle
dominant region are about 150 km for all the ECHO IV experiments if ;| = .0l.
If == .1, the cutoff altitude is slightly below the injection altitude.

The range of final beam radius for # ranging from .01 to .1 is
presented in Table 2 for each experiment. The e value of .6 was used to
specify the cut-off altitude. The spread for pulse 12 is narrower than that

of the others anu is due to a combination of its enrergy and injection pitch
angle.

lable 7. Beanm Spreading Duc Lu dave-iart.cie interacioon

Pulse Number Enerqgy (keV) [ < dg (km)

12 38 4.4 - 4.6 524 - 56

g 10 26 4.6 - 6.6 .22 - 45
f 21 34 3-5 1 - 28
; 3 36 7 - 2.8 006 - 10
! 24 32 1.3 - 3.4 02 - 14
E ; 26 | 33 - 2.4 001 - 6




In Figure 4, we show the beam spreading due to particle-
particle interactions (the solid vertical line) and the total spreading due
to both particle-particle and wave-particle interactions (the shaded
bars). Except for the 26 keV case injected at 210 km, good agreement is
found for all the other cases between experiments and calculations.

We now consider the cold beam model for the case of the 8.7 keV,
500 mA beam in the Davis et al. (1971) experiment. Linear theory, giving the
dispersion relation for cold beams injected into a plasma, predicts (0'Neil and
Malmberg (1968)) the following maximum growth rate

.3 y1/3 29
(3) “p T (29)

~n
™

where iy is the plasma frequency.

The electric field corresponding to the nonlinear development of the beam-
plasma instability was given by Drummond et al. (1970) and Q'Neil et al.
(1971):

which can be derived by the usual particle trapping and bounce frequency
arguments. For this case, &v is given by
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Substituting this equation into Equation (11), we get

PN Y
S 2,2 €y sin oy (d)
g
f
Now,
= 0.011 ——~»~l§§%)-7
E(keV) r

where I(mA) is the curvent in mA, E(keV) is the energy in keV, and r is
beam radius in rg units. Thus,

and

For the 8.7 keV case, I(mA) = 500. The background plasma is characterized by

ip = 178 X 10% sec™! when Ny = 10° em™3. ‘

! Since ‘rCG is not constant for the cold beam case, a numerical
calculation of beam spreading has been performed using the Monte Carlo code
described in Section 2.4. The results are shown in Figure 5 and, compared to

(35)

the warm beam results of Figures 1 - 3, suugest that the wave-particle interaction
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region extends much deeper into the atmosphere.

While the computed large beam spread indicates the importance of
beam plasma turbulence, the results are not completely self-consistent. The

i ey v

appreciable beam expansion means '« is greatly reduced, so that it is un-
likely that the beam can remain cold at lower E-region altitudes. Thus
Equations (29) and (30) should be replaced with warm beam expressions some-
where above 100 kim. The intersection of ¢ and v occurs at low altitudes, but
there is a problem with performing the given calculation down to low altitudes
due to energy loss. Significant loss will occur below 120 km, and this is not
accounted for in the calculation. Thus our results should serve simply as an

YA -

d indication of the potential of turbulence in spreading the beam under discussion.



Section 4

DETAILED ENERGY DEPOSITION AND OPTICAL EMISSION PROPERTIES USING CODE MCBE

4.1 Computational Model and Problem Parameters.

In the previous section, we presented results basically analytical
in nature giving the mean radius of selected e-beams following spreading due to
turbulence and particle-particle interactions. The contribution from the latter
effect was determined by using the analytical result of Lin and Strickiand (1981)
shown as the vertical line in Figure 4. In this section, we augnent these ana-
lytical results with more detailed results from code MCBE. These will in-
¢lude 2D (r,z) contours of energy deposition and various other related quantities
such as the mean radius of energy deposition.

Results will be shown for particle-particle interactions alone as
well as for the combined effects of wave-particle and particle-particle inter-
actions. We wish to make it clear that we have separated the regimes for these
processes. Thus, MCBE accounts for beam spreading by wave-particle interactions
through specification of the radial beam profile at its upper altitude boundary.
The beam profile is calculated by the model specified in Section 2 which is im-
plemented in the code WPDIF.

Code MCBE was developed for AFGL under a previous contract. The MCBE
code describes the transport of electrons in the earth's atmosphere and includes
the effects of the earth's magnetic field. The code solves the transport problem
using an extension developed by D. L. Lin of the Monte Carlo simulation of
multiple scattering originally developed by Berger (1963).
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Results are to be presented for the two beam energies 8.7 keV
and 38 keV. The jnitial radial distribution for the 8.7 keV
beam is shown on the top graph of Figure 6. Initial distribution 1 is the
distribution for the case neglecting wave particle effects. Initial distri-
bution 2 is the distribution for the case inciuding the effects of wave-
particle interactions. Other parameters pertinent to the 8.7 keV MCBE
calculations are summarized in Table 3 below.

Neglecting Wave- ! Including Wave- 1
Particle Effects : Particle Effects
[ - S - —=- —_— s -
| Distribution 1 | 2 ;
| Initial Altitude ) 260 ki 120 km
|
“Initial Angle | 70° wrt B 70" wrt B
?Eg ' | ; earth ; earth :
CBeartn . .5 qauss ‘ .5 gauss |
L e |

Table 3. Summary of Input Parameters for 8.7 keV Beam

The initial radial distribution for the 38 keV beam is
shown on the bottom graph of Figure 6. Initial distribution 3 is the distri-
bution for the case neglecting wave-particle effects. Initial distribution 4
is the distribution for the case including the effects of wave-particle inter-
actions. Other parameters pertinent to the 38 keV MC&E calculations are sum-
marized in Table 4 below. Since the 38 keV beam is assumed to be warm by us,
Equation (16) rather than WPDIF was used to generate the distribution which has
been placed in histogram form for input to MCBE.
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Neglecting Wave-
Particle Effects

Distribution 3
Initial Altitude 212 km
Initial Angle 70° wrt gearth
{ !
'Bearth* .5 gauss
Table 4.

4.2 MCBE Results.

Including Wave-
Particle Effects

4

165 km
70° wrt 8
.5 gauss

earth

Summary of the Input Parameters for the 38 keV Beam

In this section we present selected results from the MCBE

calculations.

For the 38 keV beam, the assumption that wave-particle

effects and particle-particle effects dominate in different regimes

should be valid.

The region in which wave-particle effects are pre-

dicted to dominate is above 160 km and the energy deposition due to
particle-particle effects is negligible at that altitude.

: 3
The contour plot of the energy deposition B(z,r)[eV/cm’-e] for

the 38 keV beam is shown in Figure 7.

For the case which includes wave-particle

interactions, the contour line for a given level extends slightly further out

in radius and the peak occurs (within the statistical uncertainty of the re-

sults) at the same altitude.

Shown in Figure 8 is5 a plot of the mean
of energy deposition as a function of altitude.

radius

The calculation which includes

wave-particle effects shows an overall larger mean radius with a maximum dif-

ference of less than 20. at approximately 89 kilometers.

Figures 9 and 10

show the column energy deposition versus tangent point distance at 91.5 and
e
115 km for the 38 keV beam. The Column deposition Dp(z,g_ ) [ev/em® - e] is

obtained by an integration through and perpendicular to the beam.

We may thus
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view this quantity as being projected onto a plane parallel to the beam axis.
In the next subsection, we will discuss how the column deposition may be re-
lated to various optical emission features. Upon transforming deposition to
emission, results like those in Figures 9 and 10 give brightness of a beam

streak in two dimensions.

For the case of the 8.7 keV beam, there is an overlap between the
altitude regimes in which the wave-particle and the particle-particle effects
are important. The WPDIF calculation for this case indicates that the altitude
region for which wave-particle effects are important extends below 110 km.
There is substantial energy deposition for particle-particle effects above

110 km, however, and it was necessary to seek a compromise in order to apply
the techniques to this case. An altitude of 120 km was chosen as the ¢ltitude
at which to terminate the WPDIF calculation and begin the MCBE calculation.

Shown in fFigure 11 is a contour plot of energy deposition for the
8.7 keV beam. From this plot, one can see that the energy is deposited over
e much larger volume for the case in which wave-particle interactions are included.
Note the absence of the 10_9 contour level for this case.

Figure 12 shows that the mean radius of energy deposition is
about a factor of four greater for the case in which wave-particle interactions
are included. Figures 13 and 14 show the column energy deposition versus
tangent point distance at 105 and 115 km for the 8.7 keV beam.

4.3 Optical Properties.

In this sub-section, we relate the column energy deposition rate
such as shown in Figures 9, 10, 13, and 14 to optical emission properties.
This will enable us to estimate the brightness of ec-beam produced optical

streaks as might be <een py a distant optical imaqing system. The reference
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material for the optical aspects of the discussion to follow come from
Vallance Jones (1974) and 0'Neil et al. (1978).

EMISSION FEATURES

We have chosen to examine the spectral region between - 3200 A
and 8500 A. Table 5 provides a list of some of the more prominent features
in this range with estimates of their strengths relative to that of N2+ IN
3914 A (vallance Jones (1974)). The spectrum becomes more complicated ot
the longer wavelengths which is the reason we have not included features in

the table for such wavelengths.

EMISSION FACTORS

We designate the emission factor f through the following relation-
ship:

Rayleighs (10° ph/en? - s - 4= sr)  (3¢)

1
4nl(z,r, ) = 6.25 x 10%2 £30_(z.r, )

where 4-1 is the column emission rate, J is the starting beam current in amps,

and the constant provides the proper scaling to give Rayleighs.

Examples of f-values are given in Table 6. Valucs are shown for
individual prominent features, partial and entire band systems, and the total
of the systems cunsidered for wavelengths less than 8500 A. The given value
for 3914 A provides an efficiency of 5.4 x 10'3 (enerqgy emitted/energy deposited).
Assuming 107 of the incidern!t beam energy is backscattered, this number gives an
efficiency relative to the incident beam energy of 4.9 x 10'4

the value obtained by N'Neil. et al. (1978).

which is c¢lose to

27




oy | reatwee EMISSION STRENGTH
370 N, 2 (0,0) R |
3536 (1.2) | 7 |
3576 (0,1) i 20
| | 3582 | Ny N (1,0) ; 7 |
; | 3709 N, 2P (2,4) 2 |
3754 Ny IN (1,3) 6 '
3804 (0,2) 8 .
3804 (1,1) 4 i
f 3914 (0,0) ! 100 |
3997 N, 2P (1,4) } 4
4058 (0,3) . 3
i 4236 N IN (1,2) ; 4 ;
* 4278 (0,1) i 30 {
4709 (0,2) ; 6 |
5577 or (!s - 1oy | 100 E
6300 o1 (o - 3p) i VARIABLE ‘
R R RS

Table 5. Prominent UV Lo Middle UV Features

And Their Emission Strengths Relative To

100 Units Of N; IN 3914 A




FEATURE EMISSION FACTOR
3914 A 1.7 (- 3)
N, IN SYSTEM 2.6 (- 3)
01 5577 A 1.7 (- 3) ‘
2P 3370 A 5.6 (- 4)
2P 3576 A | 3.3 (- 4)
N, 2P SYSTEM | 1.9 (- 3)

! :
| N, 1P SYSTEM 5.0 (- 3) |
i (<8500 A) | ,
i N, VK SYSTEM i 8.3 (- 4) i

| !

Ny M | 2.8 (- 3) |
(<8500 A) | }
N o

TOTAL 1.4 (- 2) i
(SYSTEMS PLUS 4 ‘
01 5577 A) { i

Table 6. Approximate Emission Factors For
Prominent Lines, Bands, And Band Systems
Within The Interval From 2700 A To 8500 A
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The 3914 A f-value just discussed was obtained from:

1 0.8[N,] 1
%m4;wOEmJngTde'ﬂ

where 34 is the applied eV/ion pair value, the weighted density ratio gives

+ .

, 10ns to 3914 A
photons. The formula has been applied to the 100 km region where [0] is unim-

the relative N2+ jonization, and 14 is the applied ratio of N
sortant.

1 The emission factors other than for 3914 A in Table 6 were obtained
using Tables 4.5 and 4.9 - 4.13 from Vallance Jones (1974). A1l such values are
relative to f3914.

% It is worthwhile estimating the efficiency of all features considered
in Table 6. To do so, let us assume an average wavelength of 5000 A which cor-

& responds to an energy of 2.5 eV. This yields an efficiency of 3.8% (energy/
incident beam energy) allowing from 10% energy backscatter. This can be com-
pared with experiment using the data of O'Neil, et al. (1978). Given that the

beam power was 2 kW we estimate an efficiency of + 6% from their Figure 9. Con-

sidering all uncertaintics and the fact that the calculated efficiency was de-
termined for fewer features than present in the measurement. the agreement in

efficiencies i« satisfactery.

ENERGY DEPOSITION PRGPERTIES

To utilize tre emission factors in Table 6, we need values of the
Slame eneroy deposition L)(‘(z..r_L ) as introduced in the previous sub-section.
Piaure 15 snowe the qeometry which applies to the determination of this quantity.

-~

feoteeded antenration through the deposition region is

40




Figure 15.

Viewing Geometry




Dc(z‘rJ_) = / li(z,r(s)) ds eV/cmz-e (38)

where do is an element of path length along the iine-of-sight.

We now apply the information in Table 6 to some of our previous
results for an estimation of brightness of an optical streak produced by an
e-beam. We choose to consider the 38 keV beam and thus address ourselves
to Figures 9 and 10. Attention will be given to the results for wave-particle
and particle-particle effects in terms of the sum of features listed in
Table 6. The beam current J in Equation (36) is taken to be 50 mA since this
is close to the ECHO IV current for the 38 keV shot.

From Equation (36), we then have
4I(z,r_) = 4.4 x 10 Dc(z,r

Figure 16 shows 4nl as a function of r at several altitudes. Emission

vates such as these can be used directly to determine the requirements of optical
imaging systems being used to determine streak widths. The collection rate of
ohetons by the system is given by:

10f ;\(
Py RL; // 4:1(z,r, )dzdr,_ photons/s @0
7
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Figure 16. Brightness of Sum of Optical Features in Table 6 Versus Tangent Point
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Above and Below 91.5 km for the ECHO IV 38 keV Beam.




where AC is the collector area, R is the detector-to-streak distance, and |
2z and “r, give the surface area of the streak viewed by the detector. As 5

an example, consider the following parameter values:

[ ] R =120 km

e .z ="r = 10m
_ 2

. AC = 100 cm”.

For the brightnesses given in Figure 9, this gives for F, the rather weak
value of 31 photon/s from the brightest part of the streak. For the Davis
observation, this value shouid increase almost an order of magnitude since
the beam current in that experiment was larger by a corresponding amount
compared to that of the ECHO IV 38 keV shot.
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Appendix A

DERIVATION OF LINEAR GROWTH RATE

The best developed branch of plasma physics is
linear instability theory because of its mathematical
tractability. Linear instability theory can identify
those modes in a plasma that will go unstable and gives
the frequency and vector wave number of the mode. The
theory of plasma turbulence is the attempt to understand
how these linearly unstable modes saturate. In this
section, we develop the appropriate linear dispersion
relation for this problem and quote some of the pertinent

results.

The pertinent plasma linear instability theory
for this report starts with the Valsov equation and
linearizes about a perturbed electric field. The relevant

equations for this problem are:

ij afJ Sl of
W*l‘ia'_x“*mj [E+ <V_xB>]'—la_
N, j

fv| Q>
1] |t
1
el g
0
.
aﬁs._\
-
.
o,
w
<
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where:

f.(x, vt)

probability distribution function
for jth species as a function of
position, velocity, and time,
electric field;
magnetic field;
.th .

charge of the jJ species;

.th .
mass of the j species;
jth species particle density =./hifj;

unperturbed jth species particle i
density; and

jth species - neutral collision
frequency. '

The righthand side of Equation (A.1) is the so-called BGK

collision term (Farley (1963)) and has becn demonstrated o

adequately represent the effect of charge particle-neutral

collisions on linear growth rates. Of course, Equation (4.2)

is just Poisson's equation.

Equations

assuming:

oo
~~
I %<
(-*
p g
1]

32}

~
1%
Py

~
il

H:

~~
[P
l<
—
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|

(A.1) and (A.2) are linearized by

Bo(&,t)é;

~ i
kE(k, e A (electrostatic approximation);

v iA
fJo(X) + fl(k’v’m)e ’

: 3jz 51 - Yoy
Njo(nj/w) e
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where:

1 2kBTj o
53 = W = ZVUU = thermal velocity squared;
A= (w=-k-x);
w = radial wave frequency;
k = wave number;
_ ) . .th .
vOj = drift velocity of J species.

To make this standard electrostatic perturbation fit the

problem at hand, we also assume we have three species:
(1) plasma ions (i),
(2) plasma electrons (e), and

(3) beam electrons (B).

The beam electrons have a net motion in the Z direction:

v = .

—0i 0;

v =

! oe 0; and
v = v




Under these assumptions,

the first order equation from

Equation (A.1) can be written: ;
Dt (x v.wyer® | = iiE(k WTa (V) - v E’j—f vy [e*? (a.m ;
br| 5= M, “t= P00 0 - j Ny, "03°— ‘

J 0J
where:
e
D o L9y Jd : 9 ,
Dt ‘[at+—\' 'ax+Mj (¥ x B) av+Vj] (A

Equation
over the
Equation

velocity

(A.3) can be solved for fi(g,l,w) by integrating
unperturbed orbvit defined by the operator,

(A1),
as prescribed by Equation (A.2) to obtain a linear

fj(g,x,w) can then be integrated over

dispersion relation. This procedure is well documented in

several sources, (1969) and

Stix (lu62).

for example, Clemmow and Dougherty

The tinal result of this procedure is:

1 + z H, (U.‘,E) = 0 s (A.F))
J
2 L%
w?. 1+ iw.G.(w,k)
H((l)'k) = - zp% l-v%%wk—)- ’ (1\.6)
J kvthj J 3=
i —)‘j -
G(wk) = —=———e I > 1020 5 4.7)
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where:

amount ol

2 2
. 4mn_e /M. = plasma frequency;
“pj 36/ TP auenes
) _ v -
W, w + 1vj kz 7’
v y i -
Znj ]//V 2 k, Vihj (“j _ an) thermal velocity:
2
A (Veng /95 k),
L k vector perpendicular to B-field;
kz k vector parallel to B-field;
th e .
In n modified Bessel function; and
z plasma dispersion function
Fricdand Conte (1969).
Gj [Equation (pA.7)] is known as the Gordeyev
integral, Clemmow and Doughertyv (1969). To extract a meaninetul
information from Lguation (A.5). the usual “"cold”
limit is taken. This limit is:

nlasma

A, << 1 ,
J
chn, »>> 1 E) (A.X)
Wpj 77 v.] ’
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which is equivalent to saying kV << w., R and

thy 3Ty
collisions are negligible. In this limit, only the

n = -1,0,+1 terms in Equation (1.6 ) are retained and
the Bessel function and plasma dispersion function are

expanded by the following prescription ( Abramowitz and

Steean (196:3))
~ 1
I (x) = '
n (2)\)n
() = - i (1 + 12>
L‘ o

These expansions led to the following result for Hj when

J = 1i,e:
: k? w2.
! H.(w,k) = - = + P.J
J k2 \u'? - o? '
J \
k% (‘2.
- ——2-<—P—%> W2
k w

P The 1imit [Equation (A.8,] ix, however, not valid for the
beam electrons, In this case, it will turn out, the
electrustutic perturbations of interest will process the

Tn1lowing property:

1 . (A1)




—ye

For this scaling, the Landau prescription for
expanding the plasma dispersion function is operative
(Stix (1964)), and leads to the result:

ky o fpglu/ky)
3 R

H (w,k) = i = i —= w (A.11)
B B " pB nB

Combining the approximations of Equations (A.9) and (A.11)

into the plasma dispersion relation, Equation (A.5), and
2 2

neglecting the ion contribution (wpe >> wpi)’ we obtain:
2 2 2 2
k w k w
1+ —= | =P )+ 2| B8] = . (A.12)
2 2 2 2 B
k w =90 k w

e

Equation (A.12) is the standard approximate dispersion
relation for this two stream or bump on tail instability.
When this approximation is legitimate and the growth rate
is much less than the real part of the frequency:

w = wR+lY, wR >> v ,
where y = growth rate, Equation ( A.12) can readily be

solved by first setting Y, €g to zero and solving for w

R
then expanding the right-hand side in terms of y and
equating it to €g-

The result of these manipulations are:
uzs

Y o= 3 [ 2 5 ]Q(“) : (A1)
kzwpe

‘
»




w(wz—Qé)(mz—Qz-wg)

Qlw) = 7 A.14
ATEIIPS . (A1)
k2 P YR )
L = - p (.\.1:.)
. 7B 22, :
Z (] W I Up

where we have to drop the "e" subscript and redefine

“g T .. As always, it is argued that the dominance to
oscillation will be the one with the largest growth rate.
The procedure is to maximize Q(w) given an & and «

This is graphically worked out in Figure 17, Assuming

n, = 105 cm_3 and BO = 0.58 gauss,wc¢ have:
8= B . 107 sec’l,
M c
e
2
4tn e
o = —€ = 1.66 x 10" sec 1.
p M
e
w. 2
-2y = 2.75;
§i
¥ = 0.6 (see Figure 17)
. = 6.0 x 10° sec?.
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FIGURE 17 w as a Function of wp/Q to Maximize
Q(w) in Eguation A.13
(Stix (1964))
Using this value of w in Equation (A.13)
gives:
Qpax (@) = 0.4

Next, g is maximized by choosing an appropriate kz
[see Equation (A.13 )J. This is approximately accomplished

by setting:

( AT




In the limit, vtMS << VZ’ Equation (A.16) can be used in
Equation (A.11) to transform Equation (A.13) into:

v 2

0.76 & o [ 5= |Qux(w) .,  (1.17)

Vine

#

Y

where o = nB/ne. Of course, the ratio kl/kz is determined
by Equation (A.15) once w is chosen to maximize Q(w). This
ratio is shown in Figure 18 as a function of (up/&). For

our analysis:

(k‘ 2
=] = 1.0 :

which translates into an angle of @I = 450, where eI is

the angle between k and B.

The question this analysis does not answer is
the effect of collisions on the instability. Roughly
speaking, we can see the effect in the expansion condition
Equation ( A.10). With negligible collisions, the expansion
(A\.11 ) was with respect to:

A
kv << 1
Z LhB
Obviously, if we substituted ivB = iy in the computation

for HB(Q,E), we would get the same numerical answer.
Thus, @ quick and dirty approximation such that collision

freauencies cut off this instability would be the condition:

P = Vg . (A 18)
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FIGURE 1€. Ratio of Perpendicular to Parallel
Electric Field that Corresponds to Maximum
Q in Equation (A.14)

(Stix (1964))

This is really an argument that the instability will

stabilize with the growth rate which is of the same order
as the collision frequency. This completely neglects the

contribution of the denominators in Equation (A.7).

more precise statement would require the numerical solution

A

of the exact dispersion relation, which is a reasonably

tractable computational problem.
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Appendix B

DEFINITION OF COHERLENCE TIME

To explain the diffusion of auroral streaks,
we hypothesize the linear unstable waves introducced in
Section 3 grow and saturate to some level of turbulence,
producing an E-field that makes the particles E x B
drift perpendicular to the axis of the beam. The
turbulence is pictured as separate regions of coherence,
where within each region a definite electrostatic wave
eixsts with a particular « and k nominally of the value
predicted by the linear theory. If the beam particles
traverse these regions experiencing a reasonable constant
E-field per region, the guiding center of the particles
will be displaced:

LX = Vypift Tcoh ’
where: E X §
Vv . = —_—
drift )
ch
T = time particle transverses
coh coherence region; and

¢ = wvelocity of light.




In terms of gyro-radius, this Ax can be expressed as:

A}.‘ - _—e__. T (]; ])
0 . Y.
1 rg MvBs1nOB cnh

Using this random displacement, the radial diffusion of

t the electron beam can readily be computed. The objective
of turbulence theory is to calculate the coherence time
and the magnitude of the E -field.

; COHERENCE TIME

To estimate coherence time, we estimate the

E length of the coherence region. To see how this works,
consider Figurel¢. Part (a) of Figure ]9 is a picture of
a spatially uniform wave. From Section 2, we khow this
wave has wave fronts that move with velocity(w/k) = Vo
} the phase velocity. Part (b) shows a wave packet con-
x taining the wave in Part (a). The wave fronts in the wave
packet still travel at the phase velocity, but the wave
packet itself will travel of the group velocity. A beam

; particle transversing the packet at Vg
with a wave front, and the time within the packet will be:

will be in step

| L

coh B I¥Z = Vg '

=
L}

coherence region length




FIGURE 1¢(a). Plane Wave with Phase Velocity Vg

(b)

FIGURE 19(b). Wave Packet with Phase Velocity Vg
and Group Velocity Vg

In both pictures, electron velocity
is phase velocity,; therefore, electrons
see constant E-field.

If this picture is valid, the wave packet will have to be
at least one wave front wide. Without further justifica-

tion, we estimate:

= A ——%\,—
'VZ gl

. 27
coh 3 k

; Az =1 (B.2)

where A3 is an arbitrary constant introduced as a measure

of the uncertainty in this estimate.




From Equétion (3.12), we can show the group velocity
along the B-field will be about 0.5 VZ (O'Neil and Malmberg (1968)),
$O Tcon will be:

Note that this argument justifies the statement that
the beam particles will see a constant E-field within
a coherence region for any group velocity.

E-FIELD SATURATION

To estimate the E-field saturation, we use two
assumptions:

-1
Ter = A4Y , Ag = 1, (B.1)
E2/8n = Acn Kk, T Ag ~ 1; (B.5)
5°B"B'B > ’ _
where: '
122 = k. eE /M, and
r z "z

A4,A5 = arbitrary constants.

In Equation ( 3.4, is referred to as the trapping

T
tr
wp is the bounce fregquency of electrons

Tty T
trapped near the bottom of a spatially oscillating electric
field.

time.
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A lineurly unstable wave grows in a plasma

becaus¢ u reasonable number of beam particles undergo an
oscilsution in phase with each other. When the trapping
time of these particles gets to be of the order of the
slewest timescale of the linear instability analysis

(the growth rate), the zero order orbits [Equation (B.1))
arc modified to the extent the analysis breaks down,

hence, Equation (13.1).

Equation (B.H) is a statement that the energy
associated with the electric field will scale with the
heating of the plasma beam. The more wave {luctuations,

the more heating of the plasma beam.

The assumptions, Equations (8.1) and (B.5), are i
difficult to rigorously justif{y. They do reproduce the
scaling of several 1-D computer simulations and are not
contradicted by weak turbulence theory (Davis ot al. (1871)
ated Hallinan et al. (1978)). The advantage ol these assumptions
i~ thot combined with BEquation (A.17), they form a closed sct

oot the calculation of the saturated E-ficeld.

Starting with Equation ( p.4), we have:

() Lo
kZe“E? cos? o \4
Z I _ R B.6G
5 = 3 . (B.6)
M 4
Letting k., w/VZ, we can rewrite Equation (B3.6) to
read:
(e
ST B (- N2 DS WS
& 202 « 2 'z 2 4
cos” 6 A
o 1 4
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Then, using Equation (f.5), we can rewrite the above to
read:

n

2}3 M"g “‘2‘“53“ 2 4
I = cos® O, A . (.7)
npFgT N 1 Ak

Equations (®.4) and (B.7) can now be substituted in

Equation (A.17) to obtain:

-2

° A
(y/A4) = Ty = [0.76 QQ azwzwi 0052 c] —E] . (B.E)

This gives the bounce frequency as a function of parameters
derived from linear plasma theory.

BEAM DIFFUSION

Equation (B.8) can now be used to calculate the
random step size of the guiding center of beam electrons.

From the definition of Tep we have
e_E_Z.. = 1 (H (;)
Mvz 5 . .S
TipW

Substituting the proper angle dependence into Equation (3.9)

and using Equations (p.1), (B.23), and (R3.8). we can derive:

tan OI g

Ly _ A 3
r 3 tan Op w212 ’ ?
tr

o




2/5
A\ 4% tan ¢ . 2/5
I 2 2 2 2
%——x = A3<"A—j°> ~ = ';L'é [0 .70 QQ a w Q)e CcOs e I] L« 3. ](‘J)

Assuming the following narameter values with the Echo [V exneriment in
mind,

0y = T0°,
LI = 4503
w = 6.0 % 106 sec—l,
> (pB.1D
Q = 1.0 x 10’ sec™?
w, = 1.66 x 107 sec”l,
Q = 0.4,
we have:
2/5
A X A
r = 17.6 A <—§> a4/5
g 3 A4

Then, using Equation (B.1), we can reduce the random step

size expression to:

2/5 8/5

A 4/5 [r
L4x - 17.6 ) I (B .
r, Aj <A4) £675 (r v (B.12)

where 1 is in amps and EB is in keV.




COMPARISON WITH EXPERIMENT

Equations (A.17), (B.8), and (B.12Z) can now be
used to compare with the ECHO IV experiment. To make
this comparison, we first set our arbitrary constants
A3, A4, and A5 equal to unity. These constants indicated
the sensitivity of the estimates we made for coherence

time, trapping time, and beam thermal spread, respectively.

First, we test the assumption that the instability
turns off at 150 kin due to electron-neutral collisions.
Using Equations (B.8) and (B-11) the growth rate will
equal:

4/5
o 6, 2/5/(r -
y = (6.8 x 107) og <_&> sec”! (n.1n)
B

r

We now insert into '8 and 0 their values as estimated for pulse 10 which
gave the most diffuse optical streak. These values arc taken to be rg = 10
gyro-radii and 9 = .00032 which yield:

y = 4.3 «x 10% gec™?

According to Berger, et al. (1970) this corresponds to a collision
frequency at an altitude of 120 km. At 150 km, the collicion frequency

is 1.2 x 103 sec'l, a factor of 36 lower.
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The sccond assumption we would like to test is
the diffusion attributed to the random step size,
Cquation ( B.1%). Again, consider pulse 10. For tquation (B.12) with
A3 A4<A6: I, we have:

L
r
g

- 17.6 G¥/°

Obviously, as the beam descends through the atmosphere,

o decreases and this step size will decrease. An over-
estimate of the beam spreading would be to use a constant
stcp size equal to the initial or maximum step size. In
this case, the maximum beam spread will satisfy the

inequality:

A

Lx 4/5
- N —-r@—’i = Vx~x 7.8 C‘o/ ) . (B.1D

g g

where N is the number of random steps. This can be

estimated by:

flight time
J = 1.2 x lO3

i
n

-~

- goh

Thus, an upper bound for streak radius is:

which is about five times smaller than the observed
ctreak width.







